

Welcome to RCCL’s documentation!

Contents:

	RCCL
	Introduction

	API
	Communicator Functions

	Collective Communication Operations

	Group Semantics

	Library Functions

	Types

	Enumerations

	All API

	Attributions

Indices and tables

	Index

	Search Page

RCCL

Introduction

The ROCm Collective Communication Library (RCCL) is a stand-alone library which provides multi-GPU and multi-node collective communication primitives optimized for AMD GPUs. RCCL (pronounced “Rickel”) implements routines such as all-reduce, all-gather, reduce, broadcast, reduce-scatter, gather, scatter, all-to-allv, and all-to-all as well as direct point-to-point (GPU-to-GPU) send and receive operations. The provided collective communication routines are implemented using Ring and Tree algorithms. They are optimized to achieve high bandwidth and low latency by leveraging topology awareness, high-speed interconnects, RDMA based collectives. RCCL utilizes PCIe and xGMI high-speed interconnects for intra-node communication as well as InfiniBand, RoCE, and TCP/IP for inter-node communication.
RCCL supports an arbitrary number of GPUs installed in a single-node or multi-node platform. It can be easily integrated into either single- or multi-process (e.g., MPI) applications.

API

This section provides details of the library API

Communicator Functions

	
ncclResult_t ncclGetUniqueId(ncclUniqueId *uniqueId)

	Generates an ID for ncclCommInitRank.

Generates an ID to be used in ncclCommInitRank. ncclGetUniqueId should be called once and the Id should be distributed to all ranks in the communicator before calling ncclCommInitRank.

	Parameters

	uniqueId – [in] ncclUniqueId* pointer to uniqueId

	
ncclResult_t ncclCommInitRank(ncclComm_t *comm, int nranks, ncclUniqueId commId, int rank)

	Creates a new communicator (multi thread/process version).

rank must be between 0 and nranks-1 and unique within a communicator clique. Each rank is associated to a CUDA device, which has to be set before calling ncclCommInitRank. ncclCommInitRank implicitly syncronizes with other ranks, so it must be called by different threads/processes or use ncclGroupStart/ncclGroupEnd.

	Parameters

	comm – [in] ncclComm_t* communicator struct pointer

	
ncclResult_t ncclCommInitAll(ncclComm_t *comm, int ndev, const int *devlist)

	Creates a clique of communicators (single process version).

This is a convenience function to create a single-process communicator clique. Returns an array of ndev newly initialized communicators in comm. comm should be pre-allocated with size at least ndev*sizeof(ncclComm_t). If devlist is NULL, the first ndev HIP devices are used. Order of devlist defines user-order of processors within the communicator.

	
ncclResult_t ncclCommDestroy(ncclComm_t comm)

	Frees local resources associated with communicator object.

	
ncclResult_t ncclCommAbort(ncclComm_t comm)

	Frees resources associated with communicator object and aborts any operations that might still be running on the device.

	
ncclResult_t ncclCommCount(const ncclComm_t comm, int *count)

	Gets the number of ranks in the communicator clique.

	
ncclResult_t ncclCommCuDevice(const ncclComm_t comm, int *device)

	Returns the rocm device number associated with the communicator.

	
ncclResult_t ncclCommUserRank(const ncclComm_t comm, int *rank)

	Returns the user-ordered “rank” associated with the communicator.

Collective Communication Operations

Collective communication operations must be called separately for each communicator in a communicator clique.

They return when operations have been enqueued on the hipstream.

Since they may perform inter-CPU synchronization, each call has to be done from a different thread or process, or need to use Group Semantics (see below).

	
ncclResult_t ncclReduce(const void *sendbuff, void *recvbuff, size_t count, ncclDataType_t datatype, ncclRedOp_t op, int root, ncclComm_t comm, hipStream_t stream)

	Reduce.

Reduces data arrays of length count in sendbuff into recvbuff using op operation. recvbuff may be NULL on all calls except for root device. root is the rank (not the CUDA device) where data will reside after the operation is complete.

In-place operation will happen if sendbuff == recvbuff.

	
ncclResult_t ncclBcast(void *buff, size_t count, ncclDataType_t datatype, int root, ncclComm_t comm, hipStream_t stream)

	(deprecated) Broadcast (in-place)

Copies count values from root to all other devices. root is the rank (not the CUDA device) where data resides before the operation is started.

This operation is implicitely in place.

	
ncclResult_t ncclBroadcast(const void *sendbuff, void *recvbuff, size_t count, ncclDataType_t datatype, int root, ncclComm_t comm, hipStream_t stream)

	Broadcast.

Copies count values from root to all other devices. root is the rank (not the HIP device) where data resides before the operation is started.

In-place operation will happen if sendbuff == recvbuff.

	
ncclResult_t ncclAllReduce(const void *sendbuff, void *recvbuff, size_t count, ncclDataType_t datatype, ncclRedOp_t op, ncclComm_t comm, hipStream_t stream)

	All-Reduce.

Reduces data arrays of length count in sendbuff using op operation, and leaves identical copies of result on each recvbuff.

In-place operation will happen if sendbuff == recvbuff.

	
ncclResult_t ncclReduceScatter(const void *sendbuff, void *recvbuff, size_t recvcount, ncclDataType_t datatype, ncclRedOp_t op, ncclComm_t comm, hipStream_t stream)

	Reduce-Scatter.

Reduces data in sendbuff using op operation and leaves reduced result scattered over the devices so that recvbuff on rank i will contain the i-th block of the result. Assumes sendcount is equal to nranks*recvcount, which means that sendbuff should have a size of at least nranks*recvcount elements.

In-place operations will happen if recvbuff == sendbuff + rank * recvcount.

	
ncclResult_t ncclAllGather(const void *sendbuff, void *recvbuff, size_t sendcount, ncclDataType_t datatype, ncclComm_t comm, hipStream_t stream)

	All-Gather.

Each device gathers sendcount values from other GPUs into recvbuff, receiving data from rank i at offset i*sendcount. Assumes recvcount is equal to nranks*sendcount, which means that recvbuff should have a size of at least nranks*sendcount elements.

In-place operations will happen if sendbuff == recvbuff + rank * sendcount.

	
ncclResult_t ncclSend(const void *sendbuff, size_t count, ncclDataType_t datatype, int peer, ncclComm_t comm, hipStream_t stream)

	Send.

Send data from sendbuff to rank peer. Rank peer needs to call ncclRecv with the same datatype and the same count from this rank.

This operation is blocking for the GPU. If multiple ncclSend and ncclRecv operations need to progress concurrently to complete, they must be fused within a ncclGroupStart/ ncclGroupEnd section.

	
ncclResult_t ncclRecv(void *recvbuff, size_t count, ncclDataType_t datatype, int peer, ncclComm_t comm, hipStream_t stream)

	Receive.

Receive data from rank peer into recvbuff. Rank peer needs to call ncclSend with the same datatype and the same count to this rank.

This operation is blocking for the GPU. If multiple ncclSend and ncclRecv operations need to progress concurrently to complete, they must be fused within a ncclGroupStart/ ncclGroupEnd section.

	
ncclResult_t ncclGather(const void *sendbuff, void *recvbuff, size_t sendcount, ncclDataType_t datatype, int root, ncclComm_t comm, hipStream_t stream)

	Gather.

Root device gathers sendcount values from other GPUs into recvbuff, receiving data from rank i at offset i*sendcount.

Assumes recvcount is equal to nranks*sendcount, which means that recvbuff should have a size of at least nranks*sendcount elements.

In-place operations will happen if sendbuff == recvbuff + rank * sendcount.

	
ncclResult_t ncclScatter(const void *sendbuff, void *recvbuff, size_t recvcount, ncclDataType_t datatype, int root, ncclComm_t comm, hipStream_t stream)

	Scatter.

Scattered over the devices so that recvbuff on rank i will contain the i-th block of the data on root.

Assumes sendcount is equal to nranks*recvcount, which means that sendbuff should have a size of at least nranks*recvcount elements.

In-place operations will happen if recvbuff == sendbuff + rank * recvcount.

	
ncclResult_t ncclAllToAll(const void *sendbuff, void *recvbuff, size_t count, ncclDataType_t datatype, ncclComm_t comm, hipStream_t stream)

	All-To-All.

Device (i) send (j)th block of data to device (j) and be placed as (i)th block. Each block for sending/receiving has count elements, which means that recvbuff and sendbuff should have a size of nranks*count elements.

In-place operation will happen if sendbuff == recvbuff.

Group Semantics

When managing multiple GPUs from a single thread, and since NCCL collective
calls may perform inter-CPU synchronization, we need to “group” calls for
different ranks/devices into a single call.

Grouping NCCL calls as being part of the same collective operation is done
using ncclGroupStart and ncclGroupEnd. ncclGroupStart will enqueue all
collective calls until the ncclGroupEnd call, which will wait for all calls
to be complete. Note that for collective communication, ncclGroupEnd only
guarantees that the operations are enqueued on the streams, not that
the operation is effectively done.

Both collective communication and ncclCommInitRank can be used in conjunction
of ncclGroupStart/ncclGroupEnd.

	
ncclResult_t ncclGroupStart()

	Group Start.

Start a group call. All calls to NCCL until ncclGroupEnd will be fused into a single NCCL operation. Nothing will be started on the CUDA stream until ncclGroupEnd.

	
ncclResult_t ncclGroupEnd()

	Group End.

End a group call. Start a fused NCCL operation consisting of all calls since ncclGroupStart. Operations on the CUDA stream depending on the NCCL operations need to be called after ncclGroupEnd.

Library Functions

	
ncclResult_t ncclGetVersion(int *version)

	Return the NCCL_VERSION_CODE of the NCCL library in the supplied integer.

This integer is coded with the MAJOR, MINOR and PATCH level of the NCCL library

	
const char *ncclGetErrorString(ncclResult_t result)

	Returns a string for each error code.

Types

There are few data structures that are internal to the library. The pointer types to these
structures are given below. The user would need to use these types to create handles and pass them
between different library functions.

	
typedef struct ncclComm *ncclComm_t

	Opaque handle to communicator.

	
struct ncclUniqueId

	

Enumerations

This section provides all the enumerations used.

	
enum ncclResult_t

	Error type.

Values:

	
enumerator ncclSuccess

	

	
enumerator ncclUnhandledCudaError

	

	
enumerator ncclSystemError

	

	
enumerator ncclInternalError

	

	
enumerator ncclInvalidArgument

	

	
enumerator ncclInvalidUsage

	

	
enumerator ncclRemoteError

	

	
enumerator ncclInProgress

	

	
enumerator ncclNumResults

	

	
enum ncclRedOp_t

	Values:

	
enumerator ncclSum

	

	
enumerator ncclProd

	

	
enumerator ncclMax

	

	
enumerator ncclMin

	

	
enumerator ncclAvg

	

	
enumerator ncclNumOps

	

	
enumerator ncclMaxRedOp

	

	
enum ncclDataType_t

	Data types.

Values:

	
enumerator ncclInt8

	

	
enumerator ncclChar

	

	
enumerator ncclUint8

	

	
enumerator ncclInt32

	

	
enumerator ncclInt

	

	
enumerator ncclUint32

	

	
enumerator ncclInt64

	

	
enumerator ncclUint64

	

	
enumerator ncclFloat16

	

	
enumerator ncclHalf

	

	
enumerator ncclFloat32

	

	
enumerator ncclFloat

	

	
enumerator ncclFloat64

	

	
enumerator ncclDouble

	

	
enumerator ncclBfloat16

	

	
enumerator ncclNumTypes

	

All API

	
struct ncclConfig_t

	
Public Members

	
size_t size

	

	
unsigned int magic

	

	
unsigned int version

	

	
int blocking

	

	
struct ncclUniqueId

	
Public Members

	
char internal[NCCL_UNIQUE_ID_BYTES]

	

	
file nccl.h

	
#include <hip/hip_runtime.h>

#include <hip/hip_fp16.h>

Defines

	
NCCL_MAJOR

	

	
NCCL_MINOR

	

	
NCCL_PATCH

	

	
NCCL_SUFFIX

	

	
NCCL_VERSION_CODE

	

	
NCCL_VERSION(X, Y, Z)

	

	
RCCL_BFLOAT16

	

	
RCCL_GATHER_SCATTER

	

	
RCCL_ALLTOALLV

	

	
RCCL_MULTIRANKPERGPU

	

	
NCCL_UNIQUE_ID_BYTES

	

	
NCCL_CONFIG_INITIALIZER

	

Typedefs

	
typedef struct ncclComm *ncclComm_t

	Opaque handle to communicator.

	
typedef int mscclAlgoHandle_t

	Opaque handle to MSCCL algorithm.

Enums

	
enum ncclResult_t

	Error type.

Values:

	
enumerator ncclSuccess

	

	
enumerator ncclUnhandledCudaError

	

	
enumerator ncclSystemError

	

	
enumerator ncclInternalError

	

	
enumerator ncclInvalidArgument

	

	
enumerator ncclInvalidUsage

	

	
enumerator ncclRemoteError

	

	
enumerator ncclInProgress

	

	
enumerator ncclNumResults

	

	
enum ncclRedOp_dummy_t

	Reduction operation selector.

Values:

	
enumerator ncclNumOps_dummy

	

	
enum ncclRedOp_t

	Values:

	
enumerator ncclSum

	

	
enumerator ncclProd

	

	
enumerator ncclMax

	

	
enumerator ncclMin

	

	
enumerator ncclAvg

	

	
enumerator ncclNumOps

	

	
enumerator ncclMaxRedOp

	

	
enum ncclDataType_t

	Data types.

Values:

	
enumerator ncclInt8

	

	
enumerator ncclChar

	

	
enumerator ncclUint8

	

	
enumerator ncclInt32

	

	
enumerator ncclInt

	

	
enumerator ncclUint32

	

	
enumerator ncclInt64

	

	
enumerator ncclUint64

	

	
enumerator ncclFloat16

	

	
enumerator ncclHalf

	

	
enumerator ncclFloat32

	

	
enumerator ncclFloat

	

	
enumerator ncclFloat64

	

	
enumerator ncclDouble

	

	
enumerator ncclBfloat16

	

	
enumerator ncclNumTypes

	

	
enum ncclScalarResidence_t

	ncclScalarResidence_t: Location and dereferencing logic for scalar arguments.

Values:

	
enumerator ncclScalarDevice

	

	
enumerator ncclScalarHostImmediate

	

Functions

	
ncclResult_t ncclGetVersion(int *version)

	Return the NCCL_VERSION_CODE of the NCCL library in the supplied integer.

This integer is coded with the MAJOR, MINOR and PATCH level of the NCCL library

	
ncclResult_t ncclGetUniqueId(ncclUniqueId *uniqueId)

	Generates an ID for ncclCommInitRank.

Generates an ID to be used in ncclCommInitRank. ncclGetUniqueId should be called once and the Id should be distributed to all ranks in the communicator before calling ncclCommInitRank.

	Parameters

	uniqueId – [in] ncclUniqueId* pointer to uniqueId

	
ncclResult_t ncclCommInitRankConfig(ncclComm_t *comm, int nranks, ncclUniqueId commId, int rank, ncclConfig_t *config)

	Create a new communicator (multi thread/process version) with a configuration set by users.

	
ncclResult_t ncclCommInitRank(ncclComm_t *comm, int nranks, ncclUniqueId commId, int rank)

	Creates a new communicator (multi thread/process version).

rank must be between 0 and nranks-1 and unique within a communicator clique. Each rank is associated to a CUDA device, which has to be set before calling ncclCommInitRank. ncclCommInitRank implicitly syncronizes with other ranks, so it must be called by different threads/processes or use ncclGroupStart/ncclGroupEnd.

	Parameters

	comm – [in] ncclComm_t* communicator struct pointer

	
ncclResult_t ncclCommInitRankMulti(ncclComm_t *comm, int nranks, ncclUniqueId commId, int rank, int virtualId)

	Creates a new communicator (multi thread/process version) allowing multiple ranks per device.

rank must be between 0 and nranks-1 and unique within a communicator clique. Each rank is associated to a HIP device, which has to be set before calling ncclCommInitRankMulti. Since this version of the function allows multiple ranks to utilize the same HIP device, a unique virtualId per device has to be provided by each calling rank. ncclCommInitRankMulti implicitly syncronizes with other ranks, so it must be called by different threads/processes or use ncclGroupStart/ncclGroupEnd.

	Parameters

	comm – [in] ncclComm_t* communicator struct pointer

	
ncclResult_t ncclCommInitAll(ncclComm_t *comm, int ndev, const int *devlist)

	Creates a clique of communicators (single process version).

This is a convenience function to create a single-process communicator clique. Returns an array of ndev newly initialized communicators in comm. comm should be pre-allocated with size at least ndev*sizeof(ncclComm_t). If devlist is NULL, the first ndev HIP devices are used. Order of devlist defines user-order of processors within the communicator.

	
ncclResult_t ncclCommFinalize(ncclComm_t comm)

	Finalize a communicator.

ncclCommFinalize flushes all issued communications, and marks communicator state as ncclInProgress. The state will change to ncclSuccess when the communicator is globally quiescent and related resources are freed; then, calling ncclCommDestroy can locally free the rest of the resources (e.g. communicator itself) without blocking.

	
ncclResult_t ncclCommDestroy(ncclComm_t comm)

	Frees local resources associated with communicator object.

	
ncclResult_t ncclCommAbort(ncclComm_t comm)

	Frees resources associated with communicator object and aborts any operations that might still be running on the device.

	
const char *ncclGetErrorString(ncclResult_t result)

	Returns a string for each error code.

	
const char *ncclGetLastError(ncclComm_t comm)

	Returns a human-readable message of the last error that occurred. comm is currently unused and can be set to NULL.

	
ncclResult_t ncclCommGetAsyncError(ncclComm_t comm, ncclResult_t *asyncError)

	

	
ncclResult_t ncclCommCount(const ncclComm_t comm, int *count)

	Gets the number of ranks in the communicator clique.

	
ncclResult_t ncclCommCuDevice(const ncclComm_t comm, int *device)

	Returns the rocm device number associated with the communicator.

	
ncclResult_t ncclCommUserRank(const ncclComm_t comm, int *rank)

	Returns the user-ordered “rank” associated with the communicator.

	
ncclResult_t ncclRedOpCreatePreMulSum(ncclRedOp_t *op, void *scalar, ncclDataType_t datatype, ncclScalarResidence_t residence, ncclComm_t comm)

	ncclRedOpCreatePreMulSum Creates a new reduction operator which pre-multiplies input values by a given scalar locally before reducing them with peer values via summation. For use only with collectives launched against comm and datatype. The residence argument indicates how/when the memory pointed to by scalar will be dereferenced. Upon return, the newly created operator’s handle is stored in op.

	
ncclResult_t ncclRedOpDestroy(ncclRedOp_t op, ncclComm_t comm)

	ncclRedOpDestroy

Destroys the reduction operator op. The operator must have been created by ncclRedOpCreatePreMul with the matching communicator comm. An operator may be destroyed as soon as the last NCCL function which is given that operator returns.

	
ncclResult_t ncclReduce(const void *sendbuff, void *recvbuff, size_t count, ncclDataType_t datatype, ncclRedOp_t op, int root, ncclComm_t comm, hipStream_t stream)

	Reduce.

Reduces data arrays of length count in sendbuff into recvbuff using op operation. recvbuff may be NULL on all calls except for root device. root is the rank (not the CUDA device) where data will reside after the operation is complete.

In-place operation will happen if sendbuff == recvbuff.

	
ncclResult_t ncclBcast(void *buff, size_t count, ncclDataType_t datatype, int root, ncclComm_t comm, hipStream_t stream)

	(deprecated) Broadcast (in-place)

Copies count values from root to all other devices. root is the rank (not the CUDA device) where data resides before the operation is started.

This operation is implicitely in place.

	
ncclResult_t ncclBroadcast(const void *sendbuff, void *recvbuff, size_t count, ncclDataType_t datatype, int root, ncclComm_t comm, hipStream_t stream)

	Broadcast.

Copies count values from root to all other devices. root is the rank (not the HIP device) where data resides before the operation is started.

In-place operation will happen if sendbuff == recvbuff.

	
ncclResult_t ncclAllReduce(const void *sendbuff, void *recvbuff, size_t count, ncclDataType_t datatype, ncclRedOp_t op, ncclComm_t comm, hipStream_t stream)

	All-Reduce.

Reduces data arrays of length count in sendbuff using op operation, and leaves identical copies of result on each recvbuff.

In-place operation will happen if sendbuff == recvbuff.

	
ncclResult_t ncclReduceScatter(const void *sendbuff, void *recvbuff, size_t recvcount, ncclDataType_t datatype, ncclRedOp_t op, ncclComm_t comm, hipStream_t stream)

	Reduce-Scatter.

Reduces data in sendbuff using op operation and leaves reduced result scattered over the devices so that recvbuff on rank i will contain the i-th block of the result. Assumes sendcount is equal to nranks*recvcount, which means that sendbuff should have a size of at least nranks*recvcount elements.

In-place operations will happen if recvbuff == sendbuff + rank * recvcount.

	
ncclResult_t ncclAllGather(const void *sendbuff, void *recvbuff, size_t sendcount, ncclDataType_t datatype, ncclComm_t comm, hipStream_t stream)

	All-Gather.

Each device gathers sendcount values from other GPUs into recvbuff, receiving data from rank i at offset i*sendcount. Assumes recvcount is equal to nranks*sendcount, which means that recvbuff should have a size of at least nranks*sendcount elements.

In-place operations will happen if sendbuff == recvbuff + rank * sendcount.

	
ncclResult_t ncclSend(const void *sendbuff, size_t count, ncclDataType_t datatype, int peer, ncclComm_t comm, hipStream_t stream)

	Send.

Send data from sendbuff to rank peer. Rank peer needs to call ncclRecv with the same datatype and the same count from this rank.

This operation is blocking for the GPU. If multiple ncclSend and ncclRecv operations need to progress concurrently to complete, they must be fused within a ncclGroupStart/ ncclGroupEnd section.

	
ncclResult_t ncclRecv(void *recvbuff, size_t count, ncclDataType_t datatype, int peer, ncclComm_t comm, hipStream_t stream)

	Receive.

Receive data from rank peer into recvbuff. Rank peer needs to call ncclSend with the same datatype and the same count to this rank.

This operation is blocking for the GPU. If multiple ncclSend and ncclRecv operations need to progress concurrently to complete, they must be fused within a ncclGroupStart/ ncclGroupEnd section.

	
ncclResult_t ncclGather(const void *sendbuff, void *recvbuff, size_t sendcount, ncclDataType_t datatype, int root, ncclComm_t comm, hipStream_t stream)

	Gather.

Root device gathers sendcount values from other GPUs into recvbuff, receiving data from rank i at offset i*sendcount.

Assumes recvcount is equal to nranks*sendcount, which means that recvbuff should have a size of at least nranks*sendcount elements.

In-place operations will happen if sendbuff == recvbuff + rank * sendcount.

	
ncclResult_t ncclScatter(const void *sendbuff, void *recvbuff, size_t recvcount, ncclDataType_t datatype, int root, ncclComm_t comm, hipStream_t stream)

	Scatter.

Scattered over the devices so that recvbuff on rank i will contain the i-th block of the data on root.

Assumes sendcount is equal to nranks*recvcount, which means that sendbuff should have a size of at least nranks*recvcount elements.

In-place operations will happen if recvbuff == sendbuff + rank * recvcount.

	
ncclResult_t ncclAllToAll(const void *sendbuff, void *recvbuff, size_t count, ncclDataType_t datatype, ncclComm_t comm, hipStream_t stream)

	All-To-All.

Device (i) send (j)th block of data to device (j) and be placed as (i)th block. Each block for sending/receiving has count elements, which means that recvbuff and sendbuff should have a size of nranks*count elements.

In-place operation will happen if sendbuff == recvbuff.

	
ncclResult_t ncclAllToAllv(const void *sendbuff, const size_t sendcounts[], const size_t sdispls[], void *recvbuff, const size_t recvcounts[], const size_t rdispls[], ncclDataType_t datatype, ncclComm_t comm, hipStream_t stream)

	All-To-Allv.

Device (i) sends sendcounts[j] of data from offset sdispls[j] to device (j). In the same time, device (i) receives recvcounts[j] of data from device (j) to be placed at rdispls[j].

sendcounts, sdispls, recvcounts and rdispls are all measured in the units of datatype, not bytes.

In-place operation will happen if sendbuff == recvbuff.

	
ncclResult_t mscclLoadAlgo(const char *mscclAlgoFilePath, mscclAlgoHandle_t *mscclAlgoHandle)

	MSCCL Load Algorithm.

Load MSCCL algorithm file specified in mscclAlgoFilePath and return its handle via mscclAlgoHandle. This API is expected to be called by MSCCL scheduler instead of end users.

	
ncclResult_t pmscclLoadAlgo(const char *mscclAlgoFilePath, mscclAlgoHandle_t *mscclAlgoHandle)

	

	
ncclResult_t mscclRunAlgo(const void *sendBuff, const size_t sendCounts[], const size_t sDisPls[], void *recvBuff, const size_t recvCounts[], const size_t rDisPls[], size_t count, ncclDataType_t dataType, int root, int peer, ncclRedOp_t op, mscclAlgoHandle_t mscclAlgoHandle, ncclComm_t comm, hipStream_t stream)

	MSCCL Run Algorithm.

Run MSCCL algorithm specified by mscclAlgoHandle. The parameter list merges all possible parameters required by different operations as this is a general-purposed API. This API is expected to be called by MSCCL scheduler instead of end users.

	
ncclResult_t pmscclRunAlgo(const void *sendBuff, const size_t sendCounts[], const size_t sDisPls[], void *recvBuff, const size_t recvCounts[], const size_t rDisPls[], size_t count, ncclDataType_t dataType, int root, int peer, ncclRedOp_t op, mscclAlgoHandle_t mscclAlgoHandle, ncclComm_t comm, hipStream_t stream)

	

	
ncclResult_t mscclUnloadAlgo(mscclAlgoHandle_t mscclAlgoHandle)

	MSCCL Load Algorithm.

Unload MSCCL algorithm previous loaded using its handle. This API is expected to be called by MSCCL scheduler instead of end users.

	
ncclResult_t pmscclUnloadAlgo(mscclAlgoHandle_t mscclAlgoHandle)

	

	
ncclResult_t ncclGroupStart()

	Group Start.

Start a group call. All calls to NCCL until ncclGroupEnd will be fused into a single NCCL operation. Nothing will be started on the CUDA stream until ncclGroupEnd.

	
ncclResult_t ncclGroupEnd()

	Group End.

End a group call. Start a fused NCCL operation consisting of all calls since ncclGroupStart. Operations on the CUDA stream depending on the NCCL operations need to be called after ncclGroupEnd.

Attributions

Contains contributions from NVIDIA.

Copyright (c) 2015-2020, NVIDIA CORPORATION. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

	Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

	Neither the name of NVIDIA CORPORATION, Lawrence Berkeley National
Laboratory, the U.S. Department of Energy, nor the names of their
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS’’ AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The U.S. Department of Energy funded the development of this software
under subcontract 7078610 with Lawrence Berkeley National Laboratory.

This code also includes files from the NVIDIA Tools Extension SDK project.

For more information and license details, see

https://github.com/NVIDIA/NVTX

Index

 M
 | N
 | P
 | R

M

 	
 	mscclAlgoHandle_t (C++ type)

 	mscclLoadAlgo (C++ function)

 	
 	mscclRunAlgo (C++ function)

 	mscclUnloadAlgo (C++ function)

N

 	
 	NCCL_CONFIG_INITIALIZER (C macro)

 	NCCL_MAJOR (C macro)

 	NCCL_MINOR (C macro)

 	NCCL_PATCH (C macro)

 	NCCL_SUFFIX (C macro)

 	NCCL_UNIQUE_ID_BYTES (C macro)

 	NCCL_VERSION (C macro)

 	NCCL_VERSION_CODE (C macro)

 	ncclAllGather (C++ function), [1]

 	ncclAllReduce (C++ function), [1]

 	ncclAllToAll (C++ function), [1]

 	ncclAllToAllv (C++ function)

 	ncclBcast (C++ function), [1]

 	ncclBroadcast (C++ function), [1]

 	ncclComm_t (C++ type), [1]

 	ncclCommAbort (C++ function), [1]

 	ncclCommCount (C++ function), [1]

 	ncclCommCuDevice (C++ function), [1]

 	ncclCommDestroy (C++ function), [1]

 	ncclCommFinalize (C++ function)

 	ncclCommGetAsyncError (C++ function)

 	ncclCommInitAll (C++ function), [1]

 	ncclCommInitRank (C++ function), [1]

 	ncclCommInitRankConfig (C++ function)

 	ncclCommInitRankMulti (C++ function)

 	ncclCommUserRank (C++ function), [1]

 	ncclConfig_t (C++ struct)

 	ncclConfig_t::blocking (C++ member)

 	ncclConfig_t::magic (C++ member)

 	ncclConfig_t::size (C++ member)

 	ncclConfig_t::version (C++ member)

 	ncclDataType_t (C++ enum), [1]

 	ncclDataType_t::ncclBfloat16 (C++ enumerator), [1]

 	ncclDataType_t::ncclChar (C++ enumerator), [1]

 	ncclDataType_t::ncclDouble (C++ enumerator), [1]

 	ncclDataType_t::ncclFloat (C++ enumerator), [1]

 	ncclDataType_t::ncclFloat16 (C++ enumerator), [1]

 	ncclDataType_t::ncclFloat32 (C++ enumerator), [1]

 	ncclDataType_t::ncclFloat64 (C++ enumerator), [1]

 	ncclDataType_t::ncclHalf (C++ enumerator), [1]

 	ncclDataType_t::ncclInt (C++ enumerator), [1]

 	ncclDataType_t::ncclInt32 (C++ enumerator), [1]

 	ncclDataType_t::ncclInt64 (C++ enumerator), [1]

 	
 	ncclDataType_t::ncclInt8 (C++ enumerator), [1]

 	ncclDataType_t::ncclNumTypes (C++ enumerator), [1]

 	ncclDataType_t::ncclUint32 (C++ enumerator), [1]

 	ncclDataType_t::ncclUint64 (C++ enumerator), [1]

 	ncclDataType_t::ncclUint8 (C++ enumerator), [1]

 	ncclGather (C++ function), [1]

 	ncclGetErrorString (C++ function), [1]

 	ncclGetLastError (C++ function)

 	ncclGetUniqueId (C++ function), [1]

 	ncclGetVersion (C++ function), [1]

 	ncclGroupEnd (C++ function), [1]

 	ncclGroupStart (C++ function), [1]

 	ncclRecv (C++ function), [1]

 	ncclRedOp_dummy_t (C++ enum)

 	ncclRedOp_dummy_t::ncclNumOps_dummy (C++ enumerator)

 	ncclRedOp_t (C++ enum), [1]

 	ncclRedOp_t::ncclAvg (C++ enumerator), [1]

 	ncclRedOp_t::ncclMax (C++ enumerator), [1]

 	ncclRedOp_t::ncclMaxRedOp (C++ enumerator), [1]

 	ncclRedOp_t::ncclMin (C++ enumerator), [1]

 	ncclRedOp_t::ncclNumOps (C++ enumerator), [1]

 	ncclRedOp_t::ncclProd (C++ enumerator), [1]

 	ncclRedOp_t::ncclSum (C++ enumerator), [1]

 	ncclRedOpCreatePreMulSum (C++ function)

 	ncclRedOpDestroy (C++ function)

 	ncclReduce (C++ function), [1]

 	ncclReduceScatter (C++ function), [1]

 	ncclResult_t (C++ enum), [1]

 	ncclResult_t::ncclInProgress (C++ enumerator), [1]

 	ncclResult_t::ncclInternalError (C++ enumerator), [1]

 	ncclResult_t::ncclInvalidArgument (C++ enumerator), [1]

 	ncclResult_t::ncclInvalidUsage (C++ enumerator), [1]

 	ncclResult_t::ncclNumResults (C++ enumerator), [1]

 	ncclResult_t::ncclRemoteError (C++ enumerator), [1]

 	ncclResult_t::ncclSuccess (C++ enumerator), [1]

 	ncclResult_t::ncclSystemError (C++ enumerator), [1]

 	ncclResult_t::ncclUnhandledCudaError (C++ enumerator), [1]

 	ncclScalarResidence_t (C++ enum)

 	ncclScalarResidence_t::ncclScalarDevice (C++ enumerator)

 	ncclScalarResidence_t::ncclScalarHostImmediate (C++ enumerator)

 	ncclScatter (C++ function), [1]

 	ncclSend (C++ function), [1]

 	ncclUniqueId (C++ struct), [1]

 	ncclUniqueId::internal (C++ member)

P

 	
 	pmscclLoadAlgo (C++ function)

 	
 	pmscclRunAlgo (C++ function)

 	pmscclUnloadAlgo (C++ function)

R

 	
 	RCCL_ALLTOALLV (C macro)

 	RCCL_BFLOAT16 (C macro)

 	
 	RCCL_GATHER_SCATTER (C macro)

 	RCCL_MULTIRANKPERGPU (C macro)

 nav.xhtml

 Table of Contents

 		
 Welcome to RCCL’s documentation!

 		
 RCCL

 		
 Introduction

 		
 API

 		
 Communicator Functions

 		
 Collective Communication Operations

 		
 Group Semantics

 		
 Library Functions

 		
 Types

 		
 Enumerations

 		
 All API

 		
 Attributions

_static/plus.png

_static/file.png

_static/minus.png

